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1 Obtaining Strong Concentration

We pick up where we left off last time and prove that isotropic updates imply concentration.
Remember we proved the following lemma:

Lemma 1.1. Let 0 < α < 1, t ≥ 0. Let Z0, Z1, ... be random variables with Z0 deterministic. Let
Yk = Zk − Zk−1 ≤ 1. Finally, assume

E [Yk | Z1, ..., Zk−1] ≤ −αE
[
Y2

k | Z1, ..., Zk−1
]

.

Then
P [Zk − Z0 > t] ≤ e−αt

We will now use this to show concentration.

1.1 Concentration in a Direction

We say a distribution µ over binary random variables X1, . . . , Xn has strong concentration in
direction c ∈ R if the random variable Y = ∑n

i=1 ciXi obeys an exponentially decaying tail bound.
Sub-isotropic updates give strong concentration in every direction c, and Bansal proves a slightly
weakened form of Bernstein’s inequality. However, for simplicity, for this lecture we will focus on
the case when c ∈ {0, 1}n, which is the Chernoff bound setting.

Since our updates will be sub-isotropic in whichever variables we have ci = 1 in, we will
simply do a Chernoff bound on the full set of variables, again for notational ease. In particular,
we will show that (where µ = E [X] = ∑ x(0)i ):

Theorem 1.2. Let X = ∑ x̃i where x̃ is the final integral solution sampled from µ, the distribution induced
by sub-isotropic rounding. Then,

P [X ≥ (1 + δ)µ] ≤ exp
(
− δ2µ

2β(1 + δ/3)

)
Note if β = 1 this recovers the standard upper tail Chernoff bound with a 2

3 δ in the denominator
instead of a δ. This is equivalent to P [X− µ ≥ εµ].

1.2 Proof Overview

At first, it’s not clear how we should apply Lemma 1.1 as the natural martingale does not have
negative expected movement as is required by the first criteria. To address this, we will add the
variance of our current point to the natural martingale, which will decrease over time.

1



Formally, we define a function Var(x) : Rn → R to be Var(x) = ∑n
i=1 xi(1− xi). This measure

the variance of a distribution of n independent Bernoullis with marginals x. We define

Zk = ∑ x(k)i + λVar(x(k)).

Now we will show the two criteria of Lemma 1.1 are met with α = λ
8η where λ = t

t+2Var(x(0))
.

Intuitively, we get these criteria because the variance is decreasing in expectation at every step.
For a simple example, imagine we are in one dimension and we move to xi + ε with probability
1/2 and xi − ε otherwise. Then, the expected variance of our new point is

1
2
((xi + ε)(1− xi − ε) + (xi − ε)(1− xi + ε)) = xi(1− xi)− ε2

For more intuition, notice that after enough steps our solution will reach an integer point at
which point variance is 0. So, it makes sense that this quantity decreases in expectation as we
move, i.e. that the expected value of Yk is negative. However, we need to show that it is negative
proportional to the expected value of Y2

k .

1.3 Demonstrating the Two Criteria

Let’s show the two criteria.

Lemma 1.3. Yk ≤ 1 ∀k, 1 ≤ k ≤ t

Lemma 1.4. E[Yk|Z1, . . . , Zk−1] ≤ −α · E[Y2
k |Z1, . . . , Zk−1]

To prove the first lemma, first we define y(k) = x(k) − x(k−1) to be the difference of x between
consecutive two steps. In other words, y(k) is the update we make in the step k. By calculation,

Yk = Zk − Zk−1 = ∑
i

y(k)i + λ ∑
i

x(k)i (1− x(k)i )− λ ∑
i

x(k−1)
i (1− x(k−1)

i )

= ∑
i

y(k)i + λ(∑
i
(x(k)i − x(k−1)

i )(1− (x(k)i − x(k−1)
i )− 2x(k−1)

i (x(k)i − x(k−1)
i )))

= ∑
i

y(k)i + λ(∑
i

y(k)i (1− y(k)i )− 2x(k−1)
i y(k)i )

= ∑
i

y(k)i + λ(∑
i

y(k)i (1− y(k)i − 2x(k−1)
i ))

Since λ = t
t+2Var(x(0))

< 1, (1− y(k)i − 2x(k−1)
i ) < 1, we have Yk ≤ 2 ∑i y(k)i . Remind that the

update y(k) is chosen from a sub-isotrphic distribution, where y(k) = εu1/2r. Now we prove a
helper claim:

Claim 1.5. ‖y(k)‖2 ≤ εn ≤ 1
2
√

n .

Proof. First ε is a scalar, so ‖y(k)‖2 = ε‖u1/2r‖2. We know that u is a positive semi-definitive
(PSD) matrix which suffices that ∀i ∈ [1, n], uii ≤ 1. Let ci be the i-th column of u1/2, we have
uii = ‖ci‖2 ≤ 1. Use triangle inequality, and because r is a vector with only +1,−1 entries,
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‖u1/2r‖2 ≤ ‖r‖1 ≤ n

That immediately gives ‖y(k)‖2 ≤ εn. ε is defined as 1
2n3/2 , so ‖y(k)‖2 ≤ 1

2
√

n .

We can now finish the first criteria easily:

Claim 1.6. Yk ≤ 1.

Proof. By Cauchy–Schwarz,

Yk ≤ 2 ∑
i

y(k)i = 2‖y(k)‖1 ≤ 2
√

n‖y(k)‖2 ≤ 1

as desired.

We then look at the second criteria. To prove it, we consider two expected values Ek−1[Yk] and
Ek−1[Y2

k ] given previous k− 1 steps fixed. For the first one,

Ek−1[Yk] = E[∑
i

y(k)i + λ(∑
i

y(k)i (1− y(k)i − 2x(k−1)
i ))]

Since for all i, k, E[y(k)i ] = 0 (remember y(k) is from the sub-isotrophic distribution),

Ek−1[Yk] = −λE[∑
i
(y(k)i )2]

Then for Ek−1[Y2
k ], by applying (a + b)2 ≤ 2a2 + 2b2 twice,

Y2
k = (∑

i
y(k)i + λ(∑

i
y(k)i (1− y(k)i − 2x(k−1)

i )))2

≤ 2(∑
i

y(k)i )2 + 2λ2(∑
i

y(k)i (1− y(k)i − 2x(k−1)
i ))2

≤ 2(∑
i

y(k)i )2 + 4λ2((∑
i

y(k)i (1− 2x(k−1)
i ))2 + (∑

i
(y(k)i )2)2)

For the second term, we simply use 1− 2x(k−1)
i ≤ 1, and

(∑
i

y(k)i (1− 2x(k−1)
i ))2 ≤∑

i
(y(k)i )2

As for the third term, remember in Claim 1.3 we proved that ‖y(k)‖2
2 = ∑i(y

(k)
i )2 ≤ 1

2
√

n ≤
1
2 ,

so

(∑
i
(y(k)i )2)2 ≤ 1

2 ∑
i
(y(k)i )2

Take the two inequalities above, we can bound Y2
k as
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Y2
k ≤ (2 + 6λ2)(∑

i
y(k)i )2 ≤ 8(∑

i
y(k)i )2

Then the expectation Ek−1[Y2
k ] can be upper bounded as 8Ek−1[(∑i y(k)i )2]. Since our updates

are sub-isotropic, E[〈c, v〉2] ≤ η ∑i c2
i E[v2

i ], so

E[〈1, y(k)〉] = E[(∑
i

y(k)i )2] ≤ η ∑
i

E[(y(k)i )2]

In all, we have

Ek−1[Yk] ≤ −λE[∑
i
(y(k)i )2] ≤ −λ

E[(∑i y(k)i )2]

η
≤ − λ

8η
Ek−1[Y2

k ]

By setting α = λ
8η and applying the inequality on expectation from step k, k − 1, . . . , 1

recursively, we get the E[Yk] ≤ −αE[Y2
k ] as desired.

Since the criteria have been proven, we can now show that Zk won’t be too far from the initial
Z0.

Lemma 1.7. P [Zk − Z0 ≥ t] ≤ exp(− t2/8η

t+2Var[x(0)]
)

Proof. With the criteria satisfied, we have P [Zk − Z0 ≥ t] ≤ exp(−αt). Then substitute α = λ
8η and

λ = t
t+2Var[x(0)]

≤ 1.

Lastly, we prove the original theorem that

Lemma 1.8. Pr[X ≥ (1 + δ)µ] ≤ exp
(
− δ2µ

2β(1+δ/3)

)
Proof. By definition, Z0 = ∑i x(0)i +λVar[x(0)]. In the end, all xi have to be integers, so Var[x(k)] = 0,

Zk = ∑i x(k)i . Let v = Var[x(0)],

Zk − Z0 = ∑
i

x(k)i −∑
i

x(0)i − λv = X− µ− λv

P [Zk − Z0 ≥ t] = P [X ≥ µ + t + λv]

Remind again that λ = t
t+2v ,

P [Zk − Z0 ≥ t] = P

[
X ≥ µ + t(1 +

v
t + 2v

)

]
As v ≥ 0, t(1 + v

t+2v ) ≤
3
2 t, then

P

[
X ≥ µ +

3
2

t
]
≤ P [Zk − Z0 ≥ t] ≤ exp(− t2/8η

t + 2v
)

Now let t′ = 3
2 t to make it standard:

P
[
X ≥ µ + t′

]
≤ exp(− t′2/12η

t′ + 3v
)
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This is already one form of the desired. To get our standard bound, let t′ = δµ,

P [X ≥ (1 + δ)µ] ≤ exp(−δ2µ2/12η

δµ + 3v
) = exp(− δ2µ

12η(δ + 3v/µ)
)

Since for all k, xk ≤ 1, Var[X(0)] ≤ E[X(0)] (in other words, v ≤ µ). Therefore,

P [X ≥ (1 + δ)µ] ≤ exp(− δ2µ

12η(δ + 3)
)

At last, let β = 18η and it becomes the desired inequality.
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